
Oleh : Fiftin Noviyanto

A. What Is Top-Down Design?
� Top-down design bekerja dengan beberapa cara. Pertama

kita memiliki satu pekerjaan yang besar, selanjutnya
pekerjaan tersebut kita pecah menjadi beberapa bagian

� Analogi : Google Earth, untuk mencari kampus UAD

� Pada kasus membuat program biasanya kita dihadapkan
pada masalah yang umum. Namun dari kasus tersebut
dapat dibagi menjadi beberapa bagian kecil sehingga
memudahkan kita untuk menyelesaikannya.

� Kita harus memulainya dengan membuat kerangka
permasalahan. Selanjutnya membagi dalam beberapa
bagian proses.

� Top-Down Desain<> Buttom Up Desain

� Bottom-up design adalah desain dengan
memfokuskan pada permasalahan-permasalahan kecil
sebelum melihat permasalahan yang lebih besar.

� Top-down design memungkinkan programmer
menyelesaikan masalah dimulai dengan perencanaan
global kemudian mengisi detailnya pada setiap level
sampai lengkap

B. Real-World Problems and Design
Contoh 1 :

� Andi mengoleksi Video VHS selama beberapa tahun.
Dan saat ini ingin dipindah ke format DVD. Dia telah
membeli beberapa film dalam format DVD dan telah
diduplikasikan ke dalam format VHS. I decide to take
inventory and get rid of the old duplicate VHS
movies. How should I approach this problem?

Urutan Desain Penyelesaian

1. Make a list of all movies. Get the title of each movie
and then alphabetize those movies.

2. Next to each movie write DVD, VHS, or Both.

3. Separate the movies with the tag Both from those
without that tag.

4. Throw out the videos of the Both collection. Put
them into boxes and deliver to a Goodwill location.
Change all words Both to DVD.

5. Alphabetize the entire collection.

� Notice how steps 1 and 4 became more detailed in the second list. We
refined those steps by giving them more detail. This process is known
as stepwise refinement. Stepwise refinement is useful because it helps
the programmer outline the code he must write.

� In step 1, I could write a separate function called getTitle and another
called alphabetizeList. When I set out to write this code, I will have a
clear idea of what I need to accomplish. If I don’t refine the steps, I
have less of an idea of what I need to do, since step 1 initially only says,
‘‘Make a list of all movies.’’

� Stepwise refinement is important because it trains the programmer to
move step by step, the way a computer works. Every time you refine a
task by making it more specific, you are getting closer to being able to
write these instructions in a programming language. As a beginning
programmer, you need to learn how to organize solutions in a
systematic way so that they can be processed. If your tasks are too
vague, then chances are you will have a tough time writing them in a
language.

Contoh Kasus (1)
� Here is another example of taking a large task and breaking it into

smaller tasks using a top-down approach. Consider what you would
do if you were buying a car. Most of us would not just go to the store
and buy it without doing a few separate tasks. Each major task must
be broken into subtasks that give more

� Buying a car is really a set of other smaller tasks, like finding out how
much money you can spend and making choices about the car. You
would need to choose a car’s make, its type, and its color before
deciding whether the car was the one you wanted to buy. You also
have to get the money together for the car. Are you going to need a
bank check written instead of a personal check? Most likely!

� As you can see, the tasks on the left have been broken
down on the right to make each task more clearly
defined.

C. Computer Problems and Design
� Now we will examine some practical examples that

you can program. Each example involves a main task
that requires some refinement. As you read each
example, try to identify which task will be refined and
how it will be refined.

Contoh Kasus 1
� In this example, we will consider a math problem

involving prime numbers. We need to make a list of
all the primes less than or equal to the number 500.
This sounds like a big task, since there are 500
numbers to check, and we have to keep a list of all
those that are prime.

� Let’s start by looking at the primes less than 10. There
are four primes less than the number 10 (1 is not
considered prime)—2, 3, 5, and 7. Now we have to
find out which numbers in the number set 1, 2, . . . ,
499, 500 are prime. Let’s look at this algorithm:

1. Start a number counter called myNum at 2, since 2 is the first
number we will check.

2. Check to see whether myNum is prime.

3. If myNum is prime, write it down.

4. Increase myNum by 1 so that you can check the next number.

5. Go back to step 2 until you hit 501.

� Most of these steps are clear, but we need to elaborate on how we
would determine whether a number is prime. So step 2 needs to be
refined. In this step we would have to articulate how a prime number
is recognized. We would have to think about what we could write in
programming terms that would allow the computer to recognize a
prime number. In fact, it is not that difficult a task, but it is good that
we have drawn attention to it by separating that work from the other
steps in the algorithm.

Contoh Kasus 2
� In this example, we will find the youngest person in a group of 50

people. At first, this problem can seem difficult to program. However,
I have developed a list of steps that you can follow to complete this
task. Again, as with the previous example, consider what step needs to
be clarified.

1. Find the first person’s birth date.

2. Find the next person’s birth date. Retain the more recent birth date.

3. Go back to step 2 if there are more people.

4. Stop when there are no more people to check.

� The step that needs the most refinement is step 2, where we have to
retain the more recent birth date. That would involve some subtasks
of comparing years of birth, and if those were the same, we would
compare months and then days, if necessary.

� Find the first person’s birth date. Get the year, the month,
and the day.

� Find the next person’s birth date. Get the year, the month,
and the day.

� Retain the more recent birth date. Compare years, then
months, if necessary, and days, if necessary.

� Go back to step 2 if there are more people. Check the list
of people.

� Stop when there are no more people to check.

Both of these are examples of top-down design. As you
continue to learn about programming and encounter
more elaborate programs, you will find this perspective
useful. The process of developing separate blocks of codes,
to accomplish separate tasks called modules or functions

Summary
� Each time you break a big problem into other smaller

problems, you are using a process of top-down design,
which we also call stepwise refinement. Each set of
tasks is refined by adding more steps to indicate how
the big task is accomplished. By trying to break your
tasks into other smaller tasks, you are starting to
develop a modular approach to a program.

